Fortube Process Quality Review

This is a Process Quality Review on ForTube completed on ____ 2020. It was performed using the Process Review process (version 0.5) and is documented here. The review was performed by ShinkaRex of Caliburn Consulting. Check out our Telegram.

The final score of the review is ___%, a ______. The breakdown of the scoring is in Scoring Appendix.

Summary of the Process

Very simply, the review looks for the following declarations from the developer's site. With these declarations, it is reasonable to trust the smart contracts.

  1. Here is my smart contract on the blockchain

  2. You can see it matches a software repository used to develop the code

  3. Here is the documentation that explains what my smart contract does

  4. Here are the tests I ran to verify my smart contract

  5. Here are the audit(s) performed to review my code by third party experts

Disclaimer

This report is for informational purposes only and does not constitute investment advice of any kind, nor does it constitute an offer to provide investment advisory or other services. Nothing in this report shall be considered a solicitation or offer to buy or sell any security, future, option or other financial instrument or to offer or provide any investment advice or service to any person in any jurisdiction. Nothing contained in this report constitutes investment advice or offers any opinion with respect to the suitability of any security, and the views expressed in this report should not be taken as advice to buy, sell or hold any security. The information in this report should not be relied upon for the purpose of investing. In preparing the information contained in this report, we have not taken into account the investment needs, objectives and financial circumstances of any particular investor. This information has no regard to the specific investment objectives, financial situation and particular needs of any specific recipient of this information and investments discussed may not be suitable for all investors.

Any views expressed in this report by us were prepared based upon the information available to us at the time such views were written. Changed or additional information could cause such views to change. All information is subject to possible correction. Information may quickly become unreliable for various reasons, including changes in market conditions or economic circumstances.

Executing Code Verification

This section looks at the code deployed on the Mainnet that gets reviewed and its corresponding software repository. The document explaining these questions is here. This review will answer the questions;

  1. Are the executing code address(s) readily available? (Y/N)

  2. Is the code actively being used? (%)

  3. Are the Contract(s) Verified/Verifiable? (Y/N)

  4. Does the code match a tagged version in the code hosting platform? (%)

  5. Is the software repository healthy? (%)

Are the executing code address(s) readily available? (Y/N)

Answer: No

The development team of ForTube provided DefiSafety with the addresses after a query. The addresses are not publicly available. This review will cover Contract AdminUpgradableProxy.sol , which is a proxy for Bank.sol.

How to improve this score

Make the ethereum addresses of the smart contract utilized by your application available on either your website or your github (in the README for instance). Ensure the address is up to date. This is a very important question wrt to the final score.

Is the code actively being used? (%)

Answer: 100%

Activity is 85 transactions a day, as indicated in the Appendix.

Percentage Score Guidance

100% More than 10 transactions a day 70% More than 10 transactions a week 40% More than 10 transactions a month 10% Less than 10 transactions a month 0% No activity

Are the Contract(s) Verified/Verifiable? (Y/N)

Answer: Yes

0xdE7B3b2Fe0E7b4925107615A5b199a4EB40D9ca9 is the Etherscan verified contract address.

โ€‹

Does the code match a tagged version on a code hosting platform? (%)

Answer: 100%

All deployed code was matched easily with contracts in the github.

Guidance:

100% All code matches and Repository was clearly labelled 60 % All code matches but no labelled repository. Repository was found manually 30% Almost all code does match perfectly and repository was found manually 0% Most matching Code could not be found

GitHub address : https://github.com/thefortube/fortube/tree/main/contractsโ€‹

Deployed contracts in the following file;

Matching Repository: https://github.com/thefortube/fortube/tree/main/contractsโ€‹

โ€‹

Is development software repository healthy? (%)

Answer: 0%

With 1 branch and 2 commits, this is not a healthy repository.

How to improve this score

Ensure there is a clearly labelled repository holding all the contracts, documentation and tests for the deployed code. Continue to test and perform other verification activities after deployment, including routine maintenance updating to new releases of testing and deployment tools.

Documentation

This section looks at the software documentation. The document explaining these questions is here.

Required questions are;

  1. Is there a whitepaper? (Y/N)

  2. Are the basic application requirements documented? (Y/N)

  3. Do the requirements fully (100%) cover the deployed contracts? (%)

  4. Are there sufficiently detailed comments for all functions within the deployed contract code (%)

  5. Is it possible to trace software requirements to the implementation in code (%)

Is there a whitepaper? (Y/N)

Answer: Yes

Location: https://docs.for.tube/introduction-to-the-fortubeโ€‹

Their documentation counts as fortube's whitepaper.

How to improve this score

Ensure the white paper is available for download from your website or at least the software repository. Ideally update the whitepaper to meet the capabilities of your present application.

Are the basic application requirements documented? (Y/N)

Answer: Yes

Location: https://docs.for.tube/apiโ€‹

ForTube does proper documentation of the functions of their code.

โ€‹

Do the requirements fully (100%) cover the deployed contracts? (%)

Answer: 50%

The requirements are well-documented in ForTube's API, but they do not fully cover the deployed contracts.

How to improve this score

This score can improve by adding content to the requirements document such that it comprehensively covers the requirements. For guidance, refer to the SecurEth System Description Document . Using tools that aid traceability detection will help.

Are there sufficiently detailed comments for all functions within the deployed contract code (%)

Answer: 20%

There are extremely limited comments within the code.

Code examples are in the Appendix. As per the SLOC, there is 7% commenting to code.

How to improve this score

This score can improve by adding comments to the deployed code such that it comprehensively covers the code. For guidance, refer to the SecurEth Software Requirements.

Is it possible to trace requirements to the implementation in code (%)

Answer: 100%

The API describes clear explicit traceability between the code and the documentation.

Guidance: 100% - Clear explicit traceability between code and documentation at a requirement level for all code 60% - Clear association between code and documents via non explicit traceability 40% - Documentation lists all the functions and describes their functions 0% - No connection between documentation and code

โ€‹

Testing

This section looks at the software testing available. It is explained in this document. This section answers the following questions;

  1. Full test suite (Covers all the deployed code) (%)

  2. Code coverage (Covers all the deployed lines of code, or explains misses) (%)

  3. Scripts and instructions to run the tests (Y/N)

  4. Packaged with the deployed code (Y/N)

  5. Report of the results (%)

  6. Formal Verification test done (%)

  7. Stress Testing environment (%)

Is there a Full test suite? (%)

Answer: 40%

A test suite is available, but the tests provided are limited, and do not cover all of the contracts in the github.

How to improve this score

This score can improve by adding tests to fully cover the code. Document what is covered by traceability or test results in the software repository.

Code coverage (Covers all the deployed lines of code, or explains misses) (%)

Answer: 30%

There are some tests, but there is not a complete set of tests, and there is no indication of code coverage.

Guidance: 100% - Documented full coverage 99-51% - Value of test coverage from documented results 50% - No indication of code coverage but clearly there is a reasonably complete set of tests 30% - Some tests evident but not complete 0% - No test for coverage seen

How to improve this score

This score can improve by adding tests achieving full code coverage. A clear report and scripts in the software repository will guarantee a high score.

Scripts and instructions to run the tests (Y/N)

Answer: No

No instructions to run the tests are evident.

How to improve this score

Add the scripts to the repository and ensure they work. Ask an outsider to create the environment and run the tests. Improve the scripts and docs based on their feedback.

Packaged with the deployed code (Y/N)

Answer: Yes

The code is packaged with the deployed code on the GitHub.

How to improve this score

Improving this score requires redeployment of the code, with the tests. This score gives credit to those who test their code before deployment and release them together. If a developer adds tests after deployment they can gain full points for all test elements except this one.

Report of the results (%)

Answer: 0%

There is no evident report of the results.

How to improve this score

Add a report with the results. The test scripts should generate the report or elements of it.

Formal Verification test done (%)

Answer: 0%

There is no evidence of a formal verification test having been done.

Stress Testing environment (%)

Answer: 0%

There is no evidence of any addresses on any test networks, and therefore no evidence of stress testing having been done.

Audits

Answer: 100%

Fortube was released in August 2020.

Slowmist conducted an Audit on their BOND smart Contract in May 2020.

Slowmist conducted an Audit on their Token FOR Smart Contract in June 2020.

Guidance:

  1. Multiple Audits performed before deployment and results public and implemented or not required (100%)

  2. Single audit performed before deployment and results public and implemented or not required (90%)

  3. Audit(s) performed after deployment and no changes required. Audit report is public. (70%)

  4. No audit performed (20%)

  5. Audit Performed after deployment, existence is public, report is not public and no improvements deployed OR smart contract address' not found, question 1 (0%)

Appendices

Author Details

The author of this review is Rex of Caliburn Consulting.

Email : rex@defisafety.com Twitter : @defisafety

I started with Ethereum just before the DAO and that was a wonderful education. It showed the importance of code quality. The second Parity hack also showed the importance of good process. Here my aviation background offers some value. Aerospace knows how to make reliable code using quality processes.

I was coaxed to go to EthDenver 2018 and there I started SecuEth.org with Bryant and Roman. We created guidelines on good processes for blockchain code development. We got EthFoundation funding to assist in their development.

Process Quality Reviews are an extension of the SecurEth guidelines that will further increase the quality processes in Solidity and Vyper development.

Career wise I am a business development manager for an avionics supplier.

Scoring Appendix

โ€‹

Executing Code Appendix

Code Used Appendix

Example Code Appendix

// SPDX-License-Identifier: MIT
pragma experimental ABIEncoderV2;
pragma solidity 0.6.4;
โ€‹
import "./library/SafeMath.sol";
import "./interface/IFToken.sol";
import "./interface/IBankController.sol";
import "./RewardType.sol";
import "./library/EthAddressLib.sol";
import "@openzeppelin/upgrades/contracts/Initializable.sol";
โ€‹
// ๅ…ฅๅฃๅˆ็บฆ
contract Bank is Initializable {
using SafeMath for uint256;
โ€‹
bool public paused;
โ€‹
address public mulSig;
โ€‹
//monitor event
event MonitorEvent(bytes32 indexed funcName, bytes payload);
modifier onlyFToken(address fToken) {
require(
controller.marketsContains(fToken) ||
msg.sender == address(controller),
"only supported ftoken or controller"
);
_;
}
โ€‹
function MonitorEventCallback(bytes32 funcName, bytes calldata payload)
external
onlyFToken(msg.sender)
{
emit MonitorEvent(funcName, payload);
}
โ€‹
// bank controller ๅฎžไพ‹
IBankController public controller;
โ€‹
address public admin;
โ€‹
address public proposedAdmin;
address public pauser;
โ€‹
modifier onlyAdmin {
require(msg.sender == admin, "OnlyAdmin");
_;
}
โ€‹
modifier whenUnpaused {
require(!paused, "System paused");
_;
}
โ€‹
modifier onlyMulSig {
require(msg.sender == mulSig, "require mulsig");
_;
}
โ€‹
modifier onlySelf {
require(msg.sender == address(this), "require self");
_;
}
โ€‹
modifier onlyPauser {
require(msg.sender == pauser, "require pauser");
_;
}
โ€‹
// ๅˆๅง‹ๅŒ–๏ผŒๅช่ƒฝๅˆๅง‹ๅŒ–ไธ€ๆฌก
function initialize(address _controller, address _mulSig)
public
initializer
{
controller = IBankController(_controller);
mulSig = _mulSig;
paused = false;
admin = msg.sender;
}
โ€‹
function setController(address _controller) public onlyAdmin {
controller = IBankController(_controller);
}
โ€‹
function setPaused() public onlyPauser {
paused = true;
}
โ€‹
function setUnpaused() public onlyPauser {
paused = false;
}
โ€‹
function setPauser(address _pauser) public onlyAdmin {
pauser = _pauser;
}
โ€‹
function proposeNewAdmin(address admin_) external onlyMulSig {
proposedAdmin = admin_;
}
โ€‹
function claimAdministration() external {
require(msg.sender == proposedAdmin, "Not proposed admin.");
admin = proposedAdmin;
proposedAdmin = address(0);
}
โ€‹
// ๅญ˜้’ฑ่ฟ”token
modifier rewardFor(address usr, RewardType rewardType) {
uint256 gasStart = gasleft();
_;
uint256 gasSpent = gasStart - gasleft();
controller.rewardForByType(
usr,
gasSpent,
tx.gasprice,
uint256(rewardType)
);
}
โ€‹
// ็”จๆˆทๅญ˜ๆฌพ

SLOC Appendix

Solidity Contracts

Language

Files

Lines

Blanks

Comments

Code

Complexity

Solidity

7

1802

261

112

1429

103

Comments to Code 112/ 1429 = 7%

Javascript Tests

Language

Files

Lines

Blanks

Comments

Code

Complexity

JavaScript

5

799

117

220

462

0

Tests to Code 462/ 1429 = 28%