YAM Finance Process Quality Review

Final Score is 25%

This is a Process Quality Audit completed on 12 August 2020. It was performed using the Process Audit process (version 0.4) and is documented here. The audit was performed by ShinkaRex of Caliburn Consulting. Check out our Telegram.

The final score of the audit is 25%, quite low. The breakdown of the scoring is in Scoring Appendix.

Summary of the Process

Very simply, the audit looks for the following declarations from the developer's site. With these declarations, it is reasonable to trust the smart contracts.

  1. Here is my smart contract on the blockchain

  2. You can see it matches a software repository used to develop the code

  3. Here is the documentation that explains what my smart contract does

  4. Here are the tests I ran to verify my smart contract

  5. Here are the audit(s) performed to review my code by third party experts

Disclaimer

This report is for informational purposes only and does not constitute investment advice of any kind, nor does it constitute an offer to provide investment advisory or other services. Nothing in this report shall be considered a solicitation or offer to buy or sell any security, future, option or other financial instrument or to offer or provide any investment advice or service to any person in any jurisdiction. Nothing contained in this report constitutes investment advice or offers any opinion with respect to the suitability of any security, and the views expressed in this report should not be taken as advice to buy, sell or hold any security. The information in this report should not be relied upon for the purpose of investing. In preparing the information contained in this report, we have not taken into account the investment needs, objectives and financial circumstances of any particular investor. This information has no regard to the specific investment objectives, financial situation and particular needs of any specific recipient of this information and investments discussed may not be suitable for all investors.

Any views expressed in this report by us were prepared based upon the information available to us at the time such views were written. Changed or additional information could cause such views to change. All information is subject to possible correction. Information may quickly become unreliable for various reasons, including changes in market conditions or economic circumstances.

Executing Code Verification

This section looks at the code deployed on the Mainnet that gets audited and its corresponding software repository. The document explaining these questions is here. This audit will answer the questions;

  1. Is the executing code address(s) readily available? (Y/N)

  2. Is the code actively being used? (%)

  3. Are the Contract(s) Verified/Verifiable? (Y/N)

  4. Does the code match a tagged version in the code hosting platform? (%)

  5. Is the software repository healthy? (%)

Is the executing code address(s) readily available? (Y/N)

Answer: No

The main contract code address is in a medium article, but I could not find it on the website. Clearly the enclosed address is not the only one used because the "Approve Comp" contract address is 0xc00e94Cb662C3520282E6f5717214004A7f26888 which I only found by executing the contract.

They are available at Address 0x0e2298E3B3390e3b945a5456fBf59eCc3f55DA16 as indicated in the Appendix. This Audit primarily covers the contract YAMTokenStorage.

How to improve this score

Make the ethereum addresses of the smart contract utilized by your application available on either your website or your github (in the README for instance). Ensure the address is up to date. This is a very important question wrt to the final score.

Is the code actively being used? (%)

Answer: 100%

Activity is well in excess of 10 transactions a day, as indicated in the Appendix.

Percentage Score Guidance

100% More than 10 transactions a day 70% More than 10 transactions a week 40% More than 10 transactions a month 10% Less than 10 transactions a month 0% No activity

Are the Contract(s) Verified/Verifiable? (Y/N)

Answer: Yes

0x0e2298E3B3390e3b945a5456fBf59eCc3f55DA16 is the Etherscan verified contract address.

Does the code match a tagged version on a code hosting platform? (%)

Answer: 0%

Only a fraction of the deployed code could be found as only one address matched code. The address for the contract comp did not match code in the github, so either it is executing code from another repository (such as in Comp).

So, I cannot match a repository for code that I can't find. Granted I can match the code deployed for a few of the files in the GitHub.

Guidance:

100% Code matches and Repository was clearly labelled 60 % Code matches but no labelled repository. Repository was found manually 30% Code does match perfectly and repository was found manually 0% Matching Code could not be found

GitHub address : https://github.com/yam-finance/yam-protocol

Deployed contracts in the following file;

Matching Repository: https://github.com/yam-finance/yam-protocol

How to improve this score

Ensure there is a clearly labelled repository holding all the contracts, documentation and tests for the deployed code. Ensure an appropriately labeled tag exists corresponding to deployment dates. Release tags are clearly communicated.

Is development software repository healthy? (%)

Answer: 20%

The github only came into existence on 4 August. The whole project was brought together in 8 days. While it does seem development and testing did take place in the repo.

How to improve this score

Ensure there is a clearly labelled repository holding all the contracts, documentation and tests for the deployed code. Continue to test and perform other verification activities after deployment, including routine maintenance updating to new releases of testing and deployment tools.

Documentation

This section looks at the software documentation. The document explaining these questions is here.

Required questions are;

  1. Is there a whitepaper? (Y/N)

  2. Are the basic application requirements documented? (Y/N)

  3. Do the requirements fully (100%) cover the deployed contracts? (%)

  4. Are there sufficiently detailed comments for all functions within the deployed contract code (%)

  5. Is it possible to trace software requirements to the implementation in code (%)

Is there a whitepaper? (Y/N)

Answer: No

Location: No whitepaper evident.

How to improve this score

Ensure the white paper is available for download from your website or at least the software repository. Ideally update the whitepaper to meet the capabilities of your present application.

Are the basic application requirements documented? (Y/N)

Answer: No

There is no explanatory documents (except comments in the code evident.

Location: ???

How to improve this score

Write the document based on the deployed code. For guidance, refer to the SecurEth System Description Document.

Do the requirements fully (100%) cover the deployed contracts? (%)

Answer: 0%

As there is no documentation, they cannot cover the code.

How to improve this score

This score can improve by adding content to the requirements document such that it comprehensively covers the requirements. For guidance, refer to the SecurEth System Description Document . Using tools that aid traceability detection will help.

Are there sufficiently detailed comments for all functions within the deployed contract code (%)

Answer: 49%

Code examples are in the Appendix. As per the SLOC, there is 49%% commenting to code.

There are actually a reasonable amount of commenting in the code, which makes up a bit for the complete lack of requirements or documentation. In this case, I removed from the SLOC calculation the files that were directly from Synthetix or Compound and just left the files make by Yam.

How to improve this score

This score can improve by adding comments to the deployed code such that it comprehensively covers the code. For guidance, refer to the SecurEth Software Requirements.

Is it possible to trace requirements to the implementation in code (%)

Answer: 0%

There are no requirements or documentation to trace from so this answer must be 0%.

Guidance: 100% - Clear explicit traceability between code and documentation at a requirement level for all code 60% - Clear association between code and documents via non explicit traceability 40% - Documentation lists all the functions and describes their functions 0% - No connection between documentation and code

How to improve this score

This score can improve by adding traceability from requirements to code such that it is clear where each requirement is coded. For reference, check the SecurEth guidelines on traceability.

Testing

This section looks at the software testing available. It is explained in this document. This section answers the following questions;

  1. Full test suite (Covers all the deployed code) (%)

  2. Code coverage (Covers all the deployed lines of code, or explains misses) (%)

  3. Scripts and instructions to run the tests (Y/N)

  4. Packaged with the deployed code (Y/N)

  5. Report of the results (%)

  6. Formal Verification test done (%)

  7. Stress Testing environment (%)

Is there a Full test suite? (%)

Answer: 80%

There is a reasonably complete test suite hidden in https://github.com/yam-finance/yam-protocol/tree/master/yam-www/src/yam/tests. The test to code ratio is rather low (60%). Though this ratio includes the Synthetix Pool code and perhaps this was not fully tested. If it wasn't this is also concerning because the code is still used and it is probably being used in a different application than it was designed. For these reasons, I only gave an 80% score.

How to improve this score

This score can improve by adding tests to fully cover the code. Document what is covered by traceability or test results in the software repository.

Code coverage (Covers all the deployed lines of code, or explains misses) (%)

Answer: 50%

There is no evidence of code coverage but given the level of tests, some coverage was inevitable.

Guidance: 100% - Documented full coverage 99-51% - Value of test coverage from documented results 50% - No indication of code coverage but clearly there is a reasonably complete set of tests 30% - Some tests evident but not complete 0% - No test for coverage seen

How to improve this score

This score can improve by adding tests achieving full code coverage. A clear report and scripts in the software repository will guarantee a high score.

Scripts and instructions to run the tests (Y/N)

Answer: Yes

Test scripts exist for the test suite.

How to improve this score

Add the scripts to the repository and ensure they work. Ask an outsider to create the environment and run the tests. Improve the scripts and docs based on their feedback.

Packaged with the deployed code (Y/N)

Answer: Yes

The tests are in the same repo as the deployed code, but in a completely different directory set.

How to improve this score

Improving this score requires redeployment of the code, with the tests. This score gives credit to those who test their code before deployment and release them together. If a developer adds tests after deployment they can gain full points for all test elements except this one.

Report of the results (%)

Answer: 0%

No test reports were evident

How to improve this score

Add a report with the results. The test scripts should generate the report or elements of it.

Formal Verification test done (%)

Answer: 0%

No evidence of formal testing.

Stress Testing environment (%)

Answer: 0%

There is no evidence of an existing test network for ongoing tests.

Audits

Answer: 20%

As they clearly say on their website, no audit has taken place.

Guidance:

  1. Multiple Audits performed before deployment and results public and implemented or not required (100%)

  2. Single audit performed before deployment and results public and implemented or not required (90%)

  3. Audit(s) performed after deployment and no changes required. Audit report is public. (70%)

  4. No audit performed (20%)

  5. Audit Performed after deployment, existence is public, report is not public and no improvements deployed (0%)

Appendices

Author Details

The author of this audit is Rex of Caliburn Consulting.

Email : rex@caliburnc.com Twitter : @ShinkaRex

I started with Ethereum just before the DAO and that was a wonderful education. It showed the importance of code quality. The second Parity hack also showed the importance of good process. Here my aviation background offers some value. Aerospace knows how to make reliable code using quality processes.

I was coaxed to go to EthDenver 2017 and there I started SecuEth.org with Bryant and Roman. We created guidelines on good processes for blockchain code development. We got EthFoundation funding to assist in their development.

Process Quality Audits are an extension of the SecurEth guidelines that will further increase the quality processes in Solidity and Vyper development.

Career wise I am a business development for an avionics supplier.

Scoring Appendix

Executing Code Appendix

Code Used Appendix

Example Code Appendix

contract YAMToken is YAMGovernanceToken {
// Modifiers
modifier onlyGov() {
require(msg.sender == gov);
_;
}
modifier onlyRebaser() {
require(msg.sender == rebaser);
_;
}
modifier onlyMinter() {
require(msg.sender == rebaser || msg.sender == incentivizer || msg.sender == gov, "not minter");
_;
}
modifier validRecipient(address to) {
require(to != address(0x0));
require(to != address(this));
_;
}
function initialize(
string memory name_,
string memory symbol_,
uint8 decimals_
)
public
{
require(yamsScalingFactor == 0, "already initialized");
name = name_;
symbol = symbol_;
decimals = decimals_;
}
/**
* @notice Computes the current max scaling factor
*/
function maxScalingFactor()
external
view
returns (uint256)
{
return _maxScalingFactor();
}
function _maxScalingFactor()
internal
view
returns (uint256)
{
// scaling factor can only go up to 2**256-1 = initSupply * yamsScalingFactor
// this is used to check if yamsScalingFactor will be too high to compute balances when rebasing.
return uint256(-1) / initSupply;
}
/**
* @notice Mints new tokens, increasing totalSupply, initSupply, and a users balance.
* @dev Limited to onlyMinter modifier
*/
function mint(address to, uint256 amount)
external
onlyMinter
returns (bool)
{
_mint(to, amount);
return true;
}

SLOC Appendix

Solidity Contracts

Language

Files

Lines

Blanks

Comments

Code

Complexity

Solidity

21

9654

1393

3832

4429

412

Solidity Contracts (for commenting ratio, Compound and Synthetix code removed)

Language

Files

Lines

Blanks

Comments

Code

Complexity

Solidity

9

2247

335

632

1280

105

Comments to Code 632/ 1280 = 49%

Javascript Tests

Language

Files

Lines

Blanks

Comments

Code

Complexity

JavaScript

7

3582

718

200

2664

58

Tests to Code 2664/ 4429 = 60%